Sains Malaysiana 54(9)(2025): 2287-2300
            
          
          http://doi.org/10.17576/jsm-2025-5409-15
            
          
          
             
          
          Modeling of Gross Domestic Product with Foreign
            Direct Investment using 
            Lotka-Volterra Equations
  
          
          (Pemodelan Keluaran Dalam Negara Kasar dengan Pelaburan Langsung Asing menggunakan Persamaan Lotka-Volterra)
            
          
          
             
          
          MOHAMMAD
            KHATIM HASAN*, NOOR ASHIKIN OTHMAN & BAHARI IDRUS
  
          
          
             
          
          Centre for
            Artificial Intelligence Technology, Faculty of Information Science and
            Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  
          
          
             
          
          Diserahkan: 31 Disember 2024/Diterima: 9 Julai 2025
            
          
          
             
          
          Abstract
            
          
          This
            paper investigates the dynamic interaction between Gross Domestic Product (GDP)
            and Foreign Direct Investment (FDI) using two distinct numerical methods: The
            Fourth-Order Runge-Kutta (RK4) method on
            Lotka-Volterra model and a family of Least-Squares (LS) methods. The study aims
            to provide a comparative analysis of these methods in terms of their accuracy,
            efficiency, and applicability in modeling the complex
            relationship between GDP and FDI. The RK4 method is employed to model the
            dynamic system governing the interaction between GDP and FDI. This method is
            chosen for its robustness in handling non-linear systems and its ability to
            provide precise numerical solutions with minimal computational error. On the
            other hand, the least squares method provides a static approximation by fitting
            a linear or nonlinear relationship between GDP and FDI. The paper conducts
            simulations using real-world data on GDP and FDI from Malaysia spanning the
            years 2009 to 2020. The results obtained from both methods are compared to
            assess their performance. The RK4 method on Lotka-Volterra model demonstrates
            superior accuracy in capturing the dynamic behavior of the GDP-FDI interaction, particularly in scenarios involving rapid changes
            or non-linear dynamics.
  
          
          
             
          
          Keywords: Dynamic
            interaction; Foreign Direct Investment (FDI); Fourth-Order Runge-Kutta (RK4); Gross Domestic Product (GDP); Lotka-Volterra
            (LV)
  
          
          
             
          
          Abstrak
            
          
          Kertas ini mengkaji interaksi dinamik antara Keluaran Dalam Negara
            Kasar (KDNK) dan Pelaburan Langsung Asing (PLA) dengan menggunakan dua kaedah berangka yang berbeza: Kaedah Runge-Kutta Tertib Keempat (RK4) pada
            model Lotka-Volterra dan satu keluarga kaedah Kuasa Dua Terkecil.
            Kajian ini bertujuan untuk memberikan analisis perbandingan antara kaedah ini dari segi ketepatan, kecekapan dan kebolehgunaan dalam memodelkan hubungan kompleks antara KDNK dan PLA. Kaedah RK4 digunakan untuk memodelkan sistem dinamik yang mengawal interaksi antara KDNK dan PLA. Kaedah ini dipilih kerana keteguhannya dalam mengendalikan sistem bukan linear dan keupayaannya memberikan penyelesaian berangka yang tepat dengan kesilapan pengiraan yang minimum. Sebaliknya, kaedah kuasa dua terkecil memberikan suatu anggaran statik dengan memadankan hubungan linear atau tak linear antara KDNK dan PLA. Kertas ini menjalankan simulasi menggunakan data
            dunia sebenar KDNK dan PLA dari Malaysia bagi tempoh 2009 hingga 2020. Hasil yang diperoleh daripada kedua-dua kaedah ini dibandingkan untuk menilai prestasi mereka. Kaedah RK4 pada model Lotka-Volterra menunjukkan ketepatan yang lebih tinggi dalam mencerap tingkah laku dinamik interaksi KDNK-PLA, terutamanya dalam senario yang melibatkan perubahan pantas atau dinamik bukan linear.
  
          
          
             
          
          Kata kunci: Interaksi dinamik; Keluaran Dalam Negara
            Kasar (KDNK); Lotka-Volterra (LV); Pelaburan Langsung Asing (PLA); Runge-Kutta Tertib Keempat (RK4)
  
          
          RUJUKAN
            
          
          Agosin, M.R. & Mayer, R. 2000. Foreign
            investment in developing countries: Does it crowd in domestic investment? Oxford
              Development Studies 28(2): 149-162.
  
          
          Alfaro, L., Chanda, A., Kalemli-Ozcan,
            S. & Sayek, S. 2004. FDI and economic growth: The
            role of local financial markets. Journal of International Economics 64(1): 89-112.
  
          
          Ang, J.B. 2008. Determinants of foreign
            direct investment in Malaysia. Journal of Policy Modeling 30(1): 185-189.
  
          
          Borensztein, E., De Gregorio, J. & Lee, J.W. 1998.
            How does foreign direct investment affect economic growth? Journal of
              International Economics 45(1): 115-135.
  
          
          Campbell, J.Y., Lo, A.W. & MacKinlay, A.C. 1997. The Econometrics of Financial
            Markets. Princeton: Princeton University Press.
  
          
          De Mello, L.R. 1997. Foreign direct
            investment in developing countries and growth: A selective survey. Journal
              of Development Studies 34(1): 1-34.
  
          
          Department of Statistics of Malaysia. 2023.
            [Online Database].
            
          
          Fox, J. 2016. Applied Regression
            Analysis and Generalized Linear Models. 3rd ed. Sage Publications.
  
          
          Görg, H. & Greenaway, D. 2004. Much ado
            about nothing? Do domestic firms really benefit from foreign direct investment? The World Bank Research Observer 19(2): 171-197.
            https://doi.org/10.1093/wbro/lkh019
  
          
          Gui-Diby, S.L. 2014. Impact of foreign
            direct investments on economic growth in Africa: Evidence from three decades of
            panel data analyses. Research in Economics 68(3): 248-256.
            https://doi.org/10. 1016/j.rie.2014.04.003
  
          
          Hasan, M.K., Othman, N.A. & Idrus, B. 2022. Data-driven macro-economic model analysis
            using non-standard trimean algorithm. In Intelligent Systems Modeling and Simulation II. Studies in Systems, Decision
              and Control, edited by Abdul Karim, S.A. Springer, Cham. p. 444.
            https://doi.org/10.1007/978-3-031-04028-3_9
  
          
          Hasan, M.K., Othman, N.A. & Idrus, B. 2019. Relationship analysis of Malaysian gross
            domestic product and foreign direct investment using numerical method with
            optimization approach. International Journal of Advanced Science and
              Technology 28(16): 410-416.
  
          
          Hasan, M.K., Karim, S.A.A. & Sulaiman,
            J. 2015. Graphical analysis of Rosenzweig-MacArthur model via adams-moultan and fourth order Runge-Kutta methods. Proceedings of the 2015 International Conference on Electrical
              Engineering and Informatics (ICEEI), Denpasar, Indonesia. pp. 670-675. doi: 10.1109/ICEEI.2015.7352583
  
          
          Helene, O., Mariano, L. &
            Guimarães-Filho, Z. 2016. Useful and little-known applications of the Least
            Square Method and some consequences of covariances. Nuclear Instruments and
              Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
                and Associated Equipment 833: 82-87.
            https://doi.org/10.1016/j.nima.2016.06.126
  
          
          Hirsch, M.W., Smale, S. & Devaney, R.L.
            2013. Differential Equations, Dynamical Systems, and an Introduction to
              Chaos. 3rd ed. Massachusetts: Academic Press.
  
          
          Hussain, K., Ismail, F. & Senu, N. 2016. Solving directly special fourth-order
            ordinary differential equations using Runge–Kutta type method. Journal of Computational and Applied Mathematics 306:
            179-199. https://doi.org/10.1016/j.cam.2016.04.002
  
          
          Joo, B.A. & Shawl, S. 2023.
            Understanding the relationship between foreign direct investment and economic
            growth in BRICS: Panel ARDL Approach. VIKALPA The Journal for Decision
              Makers 48(2): 100-113.
  
          
          Lean, H.H. & Tan, B.W. 2011. Linkages
            between foreign direct investment, domestic investment and economic growth in
            Malaysia. Journal of Economic Cooperation and Development 32(4): 75-96.
  
          
          Mohamed, M.R., Jit Sing, K.S. & Liew,
            C.Y. 2013. Impact of foreign direct investment & domestic investment on
            economic growth of Malaysia. Malaysian Journal of Economic Studies 50(1): 21-35.
  
          
          Montgomery, D.C., Peck, E.A. & Vining,
            G.G. 2021. Introduction to Linear Regression Analysis. 6th ed. New York:
            John Wiley & Son.
  
          
          Mustafa, T. & Idris, A.R. 2021. The
            foreign direct investment and economic growth in Malaysia: An OLS approach. Journal
              of Contemporary Social Science Research 5(1): 30-39.
  
          
          Mwakabungu, B.H.P. & Kauangal,
            J. 2023. An empirical analysis of the relationship between FDI and economic
            growth in Tanzania. Cogent Economics & Finance 11(1): 2204606.
            https://doi.org/10.1080/23322039.2023.2204606
  
          
          Mwinuka, L. & Mwangoka,
            V.C. 2023. Manufacturing sector’s growth in Tanzania: Empirical lessons from
            macroeconomic factors, 1970–2021. Cogent Economics & Finance 11: 1.
            https://doi.org/10.1080/23322039.2023.2223419
  
          
          Nguyen, M.L.T. 2022. Foreign direct
            investment and economic growth: The role of financial development. Cogent
              Business & Management 9(1): 2127193. DOI: 10.1080/23311975.2022.2127193
  
          
          Pineiro, G., Perelman, S., Guerschman, J.P. & Paruelo,
            J.M. 2008. How to evaluate models: Observed vs predicted or predicted vs.
            observed? Ecological Modelling 216: 316-322.
  
          
          Ratkowsky, D.A. 1983. Nonlinear
            Regression Modeling: A Unified Practical Approach.
            New York: Marcel Dekker.
  
          
          Reddy, T.A. & Henze, G.P. 2023. Linear
            regression analysis using least squares. In Applied Data Analysis and Modeling for Energy Engineers and Scientists. Springer,
            Cham. pp. 169-221. https://doi.org/10.1007/978-3-031-34869-3_5
  
          
          Seber, G.A.F. & Wild, C.J. 2003. Nonlinear
            Regression. New York: John Wiley & Sons Inc.
  
          
          Sijabat, R. 2023. The association between foreign
            investment and gross domestic product in ten ASEAN countries. Economies 11(7):
            188. https://doi.org/10.3390/ economies11070188
  
          
          Sima, D.M., Van Huffel, S. & Golub,
            G.H. 2004. Regularized total least squares based on quadratic eigenvalue
            problem solvers. Bit Numer. Math. 44: 793-812.
            https://doi.org/10.1007/s10543-004-6024-8
  
          
          Sumner, A. 2005. Is foreign direct
            investment good for the poor? A review and stocktake. Development in
              Practice 15(3-4): 269-285. https://doi.org/10.1080/ 09614520500076183
  
          
          Wang, D., Yin, J., Tang, T., Chen, X. &
            Wu, Z. 2018. Quadratic constrained weighted least-squares method for TDOA
            source localization in the presence of clock synchronization bias: Analysis and
            solution. Digital Signal Processing 82: 237-257.
            https://doi.org/10.1016/j.dsp.2018.08.002
  
          
          Wooldridge, J.M. 2016. Introductory
            Econometrics: A Modern Approach. 6th ed. Massachusetts: Cengage Learning.
  
          
          Wu, L. & Liu, S. 2013. Using grey
            Lotka-Volterra model to analyze the relationship
            between the gross domestic products and the foreign direct investment of Ningbo
            city. Proceedings of 2013 IEEE International Conference on Grey Systems and
              Intelligent Services (GSIS). pp. 265-268.
  
          
          
             
          
          *Pengarang untuk surat-menyurat;
            email: mkh@ukm.edu.my